1. Simulate the Reggie Jackson Problem 10 times.
 Record your number of boxes needed to get the poster.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Number of boxes needed to get Reggie Jackson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

 Average Number of Boxes: $\bar{X} = 2.3$

1. Create a probability distribution table for the variable X – the number of cereal boxes needed to obtain the first Reggie Jackson poster. Calculate probabilities for X between 1 and 10, by using the geometric probability distribution function on the calculator: geompdf(p,n).

 $\begin{align*}
 X &= 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \\
 \text{Probability} &= \frac{3}{10} \quad \frac{2}{10} \quad .149 \quad .069 \quad .044 \quad .029 \quad .019 \quad .013 \quad .009
 \end{align*}$

2. Create a table for the cumulative distribution.

 $\begin{align*}
 X &= 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \\
 \text{Probability} &= \frac{3}{10} \quad \frac{5}{10} \quad .703 \quad .802 \quad .902 \quad .932 \quad .952 \quad .9835
 \end{align*}$
3. Using your pdf table and your knowledge of the mean of a random variable, find the mean number of boxes a person would have to buy to obtain a Reggie Jackson poster. (**This is only an approximation, since the probabilities of 11, 12, 13,... boxes are very, very small, we are not accounting for them.**)

\[M_x = 2.82 \approx 3 \]

4. Using your mathematical intuition, on average, how many boxes do you think a person would have to buy to obtain the first Reggie Jackson poster? From this, what is the formula for the mean of a geometric random variable?

\[M_x = 3 \]
\[M_x = \frac{1}{p} \]
\[M_x = \frac{1}{\frac{1}{3}} = 3 \]
5. Using your cdf table, what is the probability it takes more than 3 cereal boxes before getting the Reggie Jackson poster?

\[P(X > 3) = 1 - 0.703 = 0.297 \]

\[P(X = 1, 2, \text{ or } 3) \]

\[P(X > 3) = \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) \left(\frac{2}{3} \right) = 0.297 \]

\[\left(\frac{2}{3} \right)^3 \]

The Geometric Setting

1. Each observation falls into one of just two categories, which for convenience we call “success” or “failure.”
2. The observations are all independent.
3. The probability of a success, call it \(p \), is the same for each observation.
4. The variable of interest is the number of trials required to obtain the first success.

Rule for Calculating Geometric Probabilities

If \(X \) has a geometric distribution with probability \(p \) of success and \((1 - p) \) of failure on each observation, the possible values of \(X \) are 1, 2, 3, \ldots . If \(n \) is any one of these values, the probability that the first success occurs on the \(n \)th trial is

\[P(X = n) = (1 - p)^{n-1} p \]
4. Using your mathematical intuition, on average, how many boxes do you think a person would have to buy to obtain the first Reggie Jackson poster? From this, what is the formula for the mean of a geometric random variable?

The Mean and Standard Deviation of a Geometric Random Variable

If X is a geometric random variable with probability of success p on each trial, then the mean, or expected value, of the random variable, that is, the expected number of trials required to get the first success, is $\mu = 1/p$. The variance of X is $(1 - p)/p^2$.

$$\mu = \frac{1}{p} \quad \sigma^2_x = \frac{1-p}{p^2}$$

(Not on AP)

5. Using your cdf table, what is the probability it takes more than 3 cereal boxes before getting the Reggie Jackson poster?

$P(X > n)$

The probability that it takes more than n trials to see the first success is

$$P(X > n) = (1 - p)^n$$