4.7 Piecewise Functions

Essential Skill: Demonstrate Understanding of Concepts

Essential Question

How can you describe a function that is represented by more than one equation?

Work with a partner.

a. Does the graph represent y as a function of x? Justify your conclusion.

b. What is the value of the function when $x = 0$? How can you tell?

c. Write an equation that represents the values of the function when $x \leq 0$. $y = -\lvert x \rvert$

d. Write an equation that represents the values of the function when $x > 0$. $\sqrt{2}$

e. Combine the results of parts (c) and (d) to write a single description of the function.

$$f(x) = \begin{cases}
-\lvert x \rvert, & \text{if } x \leq 0 \\
\sqrt{2}, & \text{if } x > 0
\end{cases}$$
Core Concept

Piecewise Function

A **piecewise function** is a function defined by two or more equations. Each “piece” of the function applies to a different part of its domain. An example is shown below:

\[
f(x) = \begin{cases}
 x - 2, & \text{if } x \leq 0 \\
 2x + 1, & \text{if } x > 0
\end{cases}
\]

- The expression \(x - 2 \) represents the value of \(f \) when \(x \) is less than or equal to 0.
- The expression \(2x + 1 \) represents the value of \(f \) when \(x \) is greater than 0.

Evaluate the function.

\[
f(x) = \begin{cases}
 x - 2, & \text{if } x \leq 0 \\
 2x + 1, & \text{if } x > 0
\end{cases}
\]

a. when \(x = -1 \)

The value of \(f \) is \(-3\) when \(x = -1 \).

b. when \(x = 1 \)

The value of \(f \) is \(3\) when \(x = 1 \).

\[
a) \quad f(-1) = -1 - 2 = -3 \\
\]

\[
b) \quad f(1) = 2(1) + 1 = 3
\]
Graph \(y = \begin{cases}
-x + 2, & \text{if } x \leq 0 \\
2x, & \text{if } x > 0
\end{cases} \).

Describe the domain and range.

Domain: all real #’s \(\mathbb{R} \)

Range: \(y > 0 \)

Graph the function. Describe the domain and range.

1. \(y = \begin{cases}
x + 1, & \text{if } x \leq 0 \\
-x, & \text{if } x > 0
\end{cases} \)

2. \(y = \begin{cases}
x - 2, & \text{if } x < 0 \\
4x, & \text{if } x \geq 0
\end{cases} \)
Write a piecewise function for the graph.

\[f(x) = \begin{cases}
-x - 2, & x \leq 0 \\
2x - 3, & x > 0
\end{cases} \]

\[y = \begin{cases}
-x - 2, & x \leq 0 \\
2x - 3, & x > 0
\end{cases} \]
Write a piecewise function for the graph.

step function: piecewise function defined by a constant value over each part of the domain

The graph consists of a series of line segments.

\[
f(x) = \begin{cases}
2, & \text{if } 0 \leq x < 2 \\
3, & \text{if } 2 \leq x < 4 \\
4, & \text{if } 4 \leq x < 6 \\
5, & \text{if } 6 \leq x < 8 \\
6, & \text{if } 8 \leq x < 10 \\
7, & \text{if } 10 \leq x < 12
\end{cases}
\]
You rent a bicycle for 4 days. The bike store charges $20 for the first day and $15 for each additional day. Write and graph a step function that represents the relationship between the number x of days and the total cost y (in dollars) of renting the bicycle.

\[f(x) = \begin{cases}
20, & \text{if } 0 < x \leq 1 \\
35, & \text{if } 1 < x \leq 2 \\
50, & \text{if } 2 < x \leq 3 \\
65, & \text{if } 3 < x \leq 4
\end{cases} \]
Work on 4.7 Extra Practice Worksheet.
10.

\[\text{domain: all real numbers; } \]
\[\text{range: } y \geq 0 \]

11.

\[\text{domain: all real numbers } \]
\[\text{range: } y > 2 \]

12.

\[\text{domain: all real numbers; } \]
\[\text{range: all real numbers} \]

13.

\[\text{domain: all real numbers; } \]
\[\text{range: } \{-1, 0, 1\} \]

14.

\[y = \begin{cases}
-\frac{7}{3}x, & x < 0 \\
3, & x \geq 0
\end{cases} \]

15.

\[y = \begin{cases}
3, & -3 \leq x < 0 \\
4, & 0 \leq x \leq 1 \\
x, & 1 < x \leq 5
\end{cases} \]
16. \[y = \begin{cases} 4 & 0 < x < 1 \\ 5 & 1 \leq x < 2 \\ 6 & 2 \leq x < 3 \\ 7 & 3 \leq x < 4 \\ 8 & 4 \leq x < 5 \end{cases} \]